

Union-Find

 Application in Kruskal’s Algorithm

 Optimizing Union and Find Methods

Minimum Spanning Trees

 Tree that connects all vertices of a graph

 Sum of the edge weights is a minimum

Kruskal’s Algorithm

 Sort edges in order of weights

 Start adding edges to sub-graph:

 Start from lowest weight

 Skip edge if it makes the sub-graph cyclic

Kruskal’s Algorithm

3

1

6

6

5 5

8

44

2

Union-Find & Kruskal’s Algorithm

 Vertices grouped in sets

 Can only add edges linking vertices not
in same set

Non-Optimal Solution

 Array of labels

 Change labels for a union

 O (n) for each union

 O (n^2)

Union-Find Methods

 makeSet (x)

 union (x , y)

 find (x)

Optimizing Union(x,y)

 Sets of vertices stored in trees

 Root of tree is label of set

 union(x,y) by joining two trees

 Root of smaller tree points to root of
larger tree

Union(x,y) Illustration

xy

Path Compression

 Nodes from ‘x’ to root have same label

 Change these parent-pointers to the root

Path Compression Illustration

g

b

a

d e f

c gb

a

d

e

f

c

Time Efficiency

 Sorting is O(e log e)

 Find maximum is O(log n)

 Path compression makes future finds O(1)

 Calling find many times gives O(1) average

 Union is 2 finds and a pointer change: O(1)

 Kruskal becomes O(e log e)

