Union-Find

* Application in Kruskal’'s Algorithm

* Optimizing Union and Find Methods

Minimum Spanning Trees

* Tree that connects all vertices of a graph

¢ Sum of the edge weights is a minimum

Kruskal's Algorithm

* Sort edges in order of weights

¢ Start adding edges to sub-graph:
* Start from lowest weight

* Skip edge if it makes the sub-graph cyclic

Kruskal's Algorithm

Union-Find & Kruskal's Algorithm

* Vertices grouped in sets

* Can only add edges linking vertices not
in same set

Non-Optimal Solution

* Array of labels
* Change labels for a union
* O (n) for each union

* 0(n"2)

Union-Find Methods

* makeSet (x)
* union (X, y)

* find (x)

Optimizing Union(x,y)

¢+ Sets of vertices stored in trees
* Root of tree is label of set
* union(x,y) by joining two trees

* Root of smaller tree points to root of
larger tree

Union(x,y) Illustration

Path Compression

* Nodes from 'x’' to root have same label

* Change these parent-pointers to the root

Path Compression Illustration

Time Efficiency

Sorting is O(e log e)

Find maximum is O(log n)

Path compression makes future finds O(1)
Calling find many times gives O(1) average
Union is 2 finds and a pointer change: O(1)

Kruskal becomes O(e log e)

